Time: 3 hours

Max score: 50

Notations: G denotes a finite group throughout, and all representations are over the field of complex numbers.

Answer any 5 questions.

(1) (a) Show that a group G is abelian if and only if all irreducible representations are of degree 1.

(b) Let G be a group and H an abelian subgroup. Show that, if d is the degree of an irreducible representation of G, then $d \leq [G : H]$, where [G : H] denotes the index of H in G. (4+6)

(2) (a) Write down the character table of D₈ = ⟨r,s: r⁴ = e = s², rs = sr⁻¹⟩, the dihedral group of order 8.
(b) Let H = {e, r, r², r³} ⊆ D₈. Let φ : H → C* be the 1-dimensional representation of

(b) Let $H = \{e, i, i, j\} \subseteq D_8$. Let $\phi: H \to \mathbb{C}^*$ be the 1-dimensional representation of H such that $\phi(r^k) = i^k$. Find the decomposition of the induced representation $\operatorname{Ind}_H^{D_8} \phi$ into irreducible representations of D_8 . (5+5)

- (3) (a) Prove that the degree of an irreducible representation of G divides the order of G. (b) Show that all characters of the symmetric group S_n are real. (8+2)
- (4) Let V be a representation of G.
 - (a) Define the dual representation $V^* = \text{Hom}(V, \mathbb{C})$ of G.
 - (b) If χ is the character of V, show that the character of V^* is $\overline{\chi}$.

(c) Show that V is an irreducible representation of G if and only if V^* is an irreducible representation of G. (2+4+4)

- (5) Let G be a non-abelian group of order 21.
 - (a) Determine the degrees of the irreducible representations of G
 - (b) How many irreducible representations G has of each degree (up to equivalence)?
 - (b) Determine the number of conjugacy classes of G.
- (6) (a) Define Specht representation S^{λ} of the symmetric group S_n corresponding to the partition λ of n.

(b) Prove that the Specht representation corresponding to the partition $\lambda = (n-1, 1)$ of n is the standard representation of S_n .

(6+4)

(4+4+2)